

LA-UR-18-28247

Approved for public release; distribution is unlimited.

Multi-branch X-ray Split and Delay Title:

Nguyen, Dinh Cong Gleason, Arianna Author(s):

Intended for: Report

Issued: 2018-08-28

Multi-branch X-ray Split and Delay

Momentum Review of LDRD 20180684ER

PI: Dinh Nguyen

Presenter: Arianna Gleason

Aug-6-2018

Project team members

- LANL
 - D. Nguyen, AOT-AE
 - C. Bolme, M-9
 - J. Lazarz, M-9
 - A. Golder, M-9
 - K. Ramos, M-7
 - R. Sandberg, MPA-CINT
- LLNL
 - T. Pardini, X-ray Science and Technology Group
 - S. Hau-Riege, X-ray Science and Technology Group
- SLAC
 - A. Gleason, Staff Scientist
 - T. Tookey; P. Hart; M. Weaver, LCLS Detector Group
 - E. Galtier, MEC Instrument Scientist
 - D. Zhu, XPP Instrument Scientist

Project Overview

Recent advancements in X-ray free electron laser (XFEL) probes coupled with high-repetition laser-driven shock waves have enabled the condensed matter physics community to begin high fidelity spatial and temporal studies on material transformations during dynamic compression → reliant on multi-target + multi-shot approach to build up kinetics information.

Gleason et al., 2015; 2017a,b

We were not allocated LCLS beam time to perform the multi-branch X-ray split-and-delay. We received beam time at the Argonne APS which has different photon characteristics. We therefore modified the split-and-delay optics to work with the APS beams.

Overall Project Goals

- Construct an X-ray delay line using stationary Bragg reflectors optimized for future dynamic compression experiments using time-angle correlated detectors
- With allocated APS beamtime:
 - monitor photon throughput
 - develop and test timing diagnostics to establish resolution limits and time synchronization procedures
 - develop beam-center positioning and detector placement strategies to collect delayed XRD patterns at different positions

- Static delay line diagnostic that can be inserted into APS hutch to perform the first single-target shock compression kinetics experiment
- test photon count optimization during APS hybrid mode for XRD
- test detector types and performance
- test decouple line broadening mechanisms in materials

Technical progress to date

- -beamtime proposals submitted to LCLS and to APS
- -beamtime granted at APS: HPCAT IDE
- -diagnostic design optimized for HPCAT -static delay of 0.7 ns at 11.5 keV
- → Beamtime completed July 2-8 at APS: HPCAT IDE
- Preliminary results presented in this talk

					bt 9am							bt 8am end
	June Th 28	F 29	Sat 30	July Sun 1	Mon 2	Tu 3	Wed 4	Thur 5	Fri 6	Sat 7		Mon 9
											Sun 8	
Ari												
Adam												
lohn L.												
Dinh												
Trista-LCLS												
Гот												
1990 Tel 1800				oratoa by Loo	manhoo manona	Jobanny, LLO	101 dio 0.0. Dop	arahoni or Eno	igy Uniton			Silue o

Delay Line design 2018

Schematic: For wavelength: 11.5 keV; 0.7 ns delay

Delay Line design 2018

Delay Line construction 2018

Detectors

CSPADs (LCLS)

-charge integrated detector -smaller active area -moderate framing rate (shortest at 2.8 us), good signal to noise

- Pilatus detectors (APS)
 - -counting detector -larger active area -fast framing rate (shortest at 1.0 us) but poor signal to noise

X-ray beam character

X-ray spots on a YAG screen

Delayed beam
Through beam

overlap achieved on a YAG screen

*best focus at 60um x 209um Photon count with hutch optimization (e.g., He max flow; 2 kapton windows) measured at the entrance to the enclosure:

→ Diode reading = 351900 mA/V = 6.1x10¹²ph/s

Other HPCAT-IDE specific photon parameters:

- → Before mono: 200 eV bw
- → 4-bounce Si mono gives 11.5 keV
- → Large KB focusing optics
- → Measured and modeled bandwidth: 1.2 eV bw

Spatial overlap procedure

Synchrotron modes of operation

standard

July 2018 Super pulse period = 3.6 us Aug. 2017 10 usec*2e11ph/s = 2e6 photons to see XRD

Synchrotron timing with CSPAD

-Exposure time of cspad limited to 2.8 us -increment this 2.8 us-gate time around the ring

- -charge acquires signal over a specified time
- -allows one to read multiple photons of possibly different energies and combine photons across pixels.
- -this is especially suited for discrete pulses of signal and weak signal

- @ APS we have now demonstrated:
- -we can isolate an APS superpulse (50 ps pulse width) and still resolve signal 10% above background in a through and delayed beam

Dynamic experiments we can now pursue at HPCAT if we are detector-gate limited

→Split-Hopkinson Bar (8 us for a shock transit so useful science could be done with 1-2.8 us gates)

If we obtain fast X-ray shutters

→Gas gun drivers (1-1.25 us shock transit so useful science could be done with 0.25-0.5 us time-slices)

Dynamic experiments we can now pursue at an XFEL -sky's the limit – we will clearly have enough flux

Pilatus detector results

- -threshold on the amount of energy in a pixel and reports back (i.e., stops collecting)
- -above this threshold it resets and waits for the next photon
- Counting rate/pixel: > 2 x 10⁶ ph/sec

Optimized for strain decoupling tests on LiF

-											
LiF	cubic	Ang		Ang^-1	deg						
Wyckoff, 1963	int	d-spc	hkl	Q	2theta for FEL						
card 85-237	77	2.3194	111	2.70897012	26.87757994						
	100	2.0087	200	3.12798591	31.13273471						
	44	1.4203	220	4.42384377	44.6088857						
	10	1.2113	311	5.18714217	52.84825981						
	11	1.1597	222	5.41794025	55.39622319						

Powdered samples:

-milled for 40, 20, 10, 5, 2.5, 1.2 min

Project Status at the end of FY

- -delay line has been fully tested and exercised
- -quantitative analysis/optimization of XRD ongoing (background subtraction; tiff conversion; binning tests)
- -manuscript preparation & LDRD report
- -poised to conduct a dynamic experiment on a 3rd or 4th generation lightsource:
 - @ APS: SHB dynamic compression experiment for next beamtime
 - @ LCLS/ExFEL: laser-driven shock compression experiment will be proposed again for Run 18

Future work

- APS, HPCAT: due 10-26-18 (Run 2019-1)
 - -Add focusing optics upstream (e.g., Be CRLs)
 - -Add beamstop
 - -Better shielding to mitigate scatter
 - -Replace large volume enclosure with tubing
 - -Ion chamber to monitor X-ray flux in situ
 - -use next generation CSPAD (ePix 10k, JungFrau)
- LCLS, MEC: due ~Sept. 2019 (Run 18)
 - -multi-branch delay line + compatibility with MEC chamber
 - -gated detector + multi-pulse mode from LCLS

Diode Beamstop

Machinable W

- Diode inside

Cu plated G-10 Fiberglass

- Circuit traces milled out

Courtesy A. Golder

Potential Configuration

Courtesy J. Lazarz

Plain Beamstop

2 mm of W will work well

NISA

The importance of He flight paths

- 11.5 keV X-ray transmission is terrible through 5m of air; better through He.
- Transmission:
 - He 99.941%
 - Air 92.803%
 - Kapton 98.595%
- After 5 Kapton windows lose ~7% transmission.

UNCLASSI. .__

hCMOS camera developed by SNL/LLNL has been tested* using LCLS femtosecond x-ray pulses: linearity, gate profile, QE...

LCLS: Two x-ray pulses, 7.2keV, 4.2ns apart

hCMOS Images

Diffraction angle (2 θ)

- Frame 1 = cold diffraction Cu (111)
- Frame 2 = new peak thermally expanded Cu (111)**

Development of new dual-pulse / dual-color modes

- Double Slotted Foil
- Split Undulator
- Injector Laser Pulse Splitting
- Multiple Laser Pulses at Cathode (dual lasers)
- Fresh Slice Technique

